Aldehyde Ketone and Carboxylic Acid

1. Assertion (A): Benzaldehyde is less reactive than ethanal towards nucleophilic attack.

Reason (R): All the carbon atoms of benzaldehyde are sp² hybridized.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 2. Assertion (A): Crossed-Cannizzaro reaction between formaldehyde and benzaldehyde gives benzyl alcohol and formate ion.

Reason (R): Formaldehyde is a better hydride donor than benzaldehyde.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Ketones cannot be prepared by the reaction of RCOCl with Grignard reagent R'MgCl.

Reason (R): The Grignard reagent reacts with ketone to form alcohol

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): Carbonyl compounds are more soluble in water than the isomeric alkanes.

Reason (R): The carbonyl oxygen forms extensive hydrogen bonding with water.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- Assertion (A): Pentan-2-one can be distinguished from pentan-3-one by iodoform test.

Reason (R): Former is a methyl ketone while the latter is not.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 6. Assertion (A): Aromatic aldehydes as well as formaldehyde undergo Cannizzaro's reaction with strong alkali.

Reason (R): Aldehydes which have α -hydrogen atoms undergo Cannizzaro's reaction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

7. Assertion (A): Protonation of a carbonyl group increases its electrophilic nature.

Reason (R): The protonation of nucleophilic oxygen is an electrophilic addition reaction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8. Assertion (A):** Formic acid reduces Tollen's reagent

Reason (R): Compounds containing CHO group reduce Tollen's reagent.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 9. Assertion (A): Aldehydes and have much higher boiling points than corresponding alkanes

Reason (R): Aldehyde and ketone are much more polar than alkanes

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

10. Assertion (A): The correct acidity order among formic acid (I), acetic acid (II) and benzoic acid (III) is I > III > II.

Reason (R): Formic acid is the only acid which gives positive tollen's test.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 11. Assertion (A): A ketone may also reduce Fehling's solution and Tollen's reagent if there is an -OH group at α – position w.r.t. each.

Reason (R): Fructose reduces Fehling's solution and Tollen's reagent.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** Acetic acid does not undergo haloform reaction.

Reason (R): Acetic acid has no alpha hydrogen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. Assertion (A): Acetophenone and benzophenone can be distinguished by iodoform test.

Reason (R): Acetophenone and benzophenone both are carbonyl compounds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 14. Assertion (A): A mixture of

and

on treatment with dil. NaOH gives

Reason (R): The ketone is very hindered and very conjugated and so less reactive than aldehyde.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

15. Assertion (A): The addition of amines in aldehyde and ketone is carried out in weakly acidic medium.

Reason (R): In strong acidic medium amines will be protonated hence the nucleophilic character of amine decrease.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **16. Assertion (A):** The order of reactivity towards nucleophilic substitution of carboxylic acid derivatives is

Reason (R): The order of reactivity is related to the leaving aptitude of the leaving group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

17. Assertion (A): Hydrolysis

O \parallel 18 $CH_3 - C - O - C_2H_5$ in acid catalysed medium gives $CH_3COOOH + C_2H_5$ OH

Reason (R): Esters on hydrolysis gives alcohol and carboxylic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** Grignard reagent reacts with aldehydes and ketones to form alcohol.

Reason (R): Alcohols have acidic hydrogen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4)Both (A) and (R) are false
- **19. Assertion (A):** Carbonyl compound take part is nucleophilic addition reactions.

Reason (R): These reactions are initiated By nucleophilic attack at the electron deficient carbon atom.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

20. Assertion (A): The addition of ammonia derivatives on carbonyl compounds is carried in weakly acidic medium.

Reason (R): In weakly acidic medium attacking nucleophile is also protonated.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **21. Assertion (A):** Formic acid reduces mercuric chloride solution.

Reason (R): Formic acid has reducing aldehydic group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** Acetaldehyde undergoes aldol condensation with dilute NaOH.

Reason (R): Aldehyde which do not contain α -hydrogen undergoes aldol condensation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

23. Assertion (A): Crossed Cannizzaro reaction between formaldehyde and benzaldehyde give benzyl alcohol and formate ion.

Reason (R): Formaldehyde is a better hydride donar than benzaldehyde.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24. Assertion (A):** Acetic acid does not give haloform reaction.

Reason (R): Acetic acid has no α -hydrogen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2)Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

0

25. Assertion (A): Carboxylic acid R – C – OH have a carbonyl group but it does not give the test of carbonyl group.

Reason (R): Due to resonance the double bond character of group is greatly reduced.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

26. Assertion (A): Acetic acid does not give haloform reaction.

Reason (R): Acetic acid has no $_{\alpha}$ -hydrogen

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **27. Assertion (A):** Ethanamide undergoes dehydration by heating with **P**,**O**_c.

Reason (R): Ethanamide undergoes dehydration to give nitro compound.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2)Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **28. Assertion (A):** 1^0 amide react with Br_2 in presence of NaOH to form 1^0 amine having one carbon atom less than amide.

Reason (R): It is degradative reduction involving acylnitrene intermediate.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

29. Assertion (A): Ester which contain α -hydrogen undergoes Claisen condensation.

Reason (R): $LiAlH_4$ reduction of ester gives acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **30.** Assertion (A): Aceto acetic ester will $CH_3 C CH_2 \overset{C}{C} OC_2H_5 \text{ give iodoform test.}$

Reason (R): It contains methyl keto group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **31. Assertion (A):** p-nitrobenzaldehyde is more reactive than benzaldehyde.

Reason (R): Benzaldehyde is less reactive than acetone.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

32. Assertion (A): Both acetone and benzaldehyde are less reactive to nucleophilic attack as compared to acetaldehyde.

Reason (R): Both acetone and benzaldehyde are resonance stabilized.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **33. Assertion (A):** Aldehydes can be easily prepared by the reduction of carboxylic acids with LiAIH₄.

Reason (R): In going from -COOH to -CHO group oxidation number of C decreases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **34. Assertion (A):** Picric acid does not contain -COOH group.

Reason (R): Picric acid is 2, 4, 6-trinitrophenol.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

35. Assertion (A): Distillation of calcium carboxylate and sulphuryl chloride can produce acid anhydrides.

Reason (R): Distillation of calcium carboxylate produces ketones.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **36. Assertion (A):** Benzamide and methyl benzoate are derivatives of benzoic acid.

Reason (R): Benzamide is less easily hydrolysed as compared to methyl benzoate.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **37. Assertion (A):** Benzoic acid does not undergo Friedel-Craft's reaction.

Reason (R):-COOH group deactivates the benzene ring by its electron withdrawing nature.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

38. Assertion (A): p-Fluorobenzoic acid is weaker acid as compared to p-chlorobenzoic acid.

Reason (R): Fluoroacetic acid is strongest acid as compared to chloroacetic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **39. Assertion (A):** m-Nitrobenzoic acid is less acidic as compared to p-nitrobenzoic acid.

Reason (R): It is due to +M effect of -NO₂ group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 40. Assertion (A): With Br₂ H₂O, phenol gives 2, 4, 6tribromophenol but with Br₂ CS₂ it gives 4-bromophenol is the major product.

Reason (R): In water ionization of phenol is enhanced but in CS_2 , it is greatly suppressed.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **41. Assertion (A):** m -Chlorobenzoic acid is a stronger acid than p-chlorobenzoic acid.

Reason (R): In p-chlorobenzoic acid both -I-effect and +R-effect of CI operate but in m-chlorobenzoic acid only -I-effect of CI operates.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **42. Assertion (A):** Although fluorine is more electronegative than chlorine, yet p-fluorobenzoic acid is a weaker acid than p-chlorobenzoic acid.

Reason (R): Due to matching size of 2p-orbitals of F and C, F has a stronger +R -effect than CI.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- **44. Assertion (A):** Nitration of benzoic acid gives m nitrobenzoic acid.
 - **Reason (R):** carboxylic group is metadirecting group.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	1	1	1	3	2	2	1	2	2	3	2	1	1	1	2	2	1	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	3	1	3	1	3	1	1	3	3	3	3	3	1	3	2	1	2	3	1
Que.	41	42	43	44																
					7															

